Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa.

Identifieur interne : 002521 ( Main/Exploration ); précédent : 002520; suivant : 002522

Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa.

Auteurs : Shanfa Lu [République populaire de Chine] ; Quanzi Li ; Hairong Wei ; Mao-Ju Chang ; Sermsawat Tunlaya-Anukit ; Hoon Kim ; Jie Liu ; Jingyuan Song ; Ying-Hsuan Sun ; Lichai Yuan ; Ting-Feng Yeh ; Ilona Peszlen ; John Ralph ; Ronald R. Sederoff ; Vincent L. Chiang

Source :

RBID : pubmed:23754401

Descripteurs français

English descriptors

Abstract

Laccases, as early as 1959, were proposed to catalyze the oxidative polymerization of monolignols. Genetic evidence in support of this hypothesis has been elusive due to functional redundancy of laccase genes. An Arabidopsis double mutant demonstrated the involvement of laccases in lignin biosynthesis. We previously identified a subset of laccase genes to be targets of a microRNA (miRNA) ptr-miR397a in Populus trichocarpa. To elucidate the roles of ptr-miR397a and its targets, we characterized the laccase gene family and identified 49 laccase gene models, of which 29 were predicted to be targets of ptr-miR397a. We overexpressed Ptr-MIR397a in transgenic P. trichocarpa. In each of all nine transgenic lines tested, 17 PtrLACs were down-regulated as analyzed by RNA-seq. Transgenic lines with severe reduction in the expression of these laccase genes resulted in an ∼40% decrease in the total laccase activity. Overexpression of Ptr-MIR397a in these transgenic lines also reduced lignin content, whereas levels of all monolignol biosynthetic gene transcripts remained unchanged. A hierarchical genetic regulatory network (GRN) built by a bottom-up graphic Gaussian model algorithm provides additional support for a role of ptr-miR397a as a negative regulator of laccases for lignin biosynthesis. Full transcriptome-based differential gene expression in the overexpressed transgenics and protein domain analyses implicate previously unidentified transcription factors and their targets in an extended hierarchical GRN including ptr-miR397a and laccases that coregulate lignin biosynthesis in wood formation. Ptr-miR397a, laccases, and other regulatory components of this network may provide additional strategies for genetic manipulation of lignin content.

DOI: 10.1073/pnas.1308936110
PubMed: 23754401
PubMed Central: PMC3696765


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa.</title>
<author>
<name sortKey="Lu, Shanfa" sort="Lu, Shanfa" uniqKey="Lu S" first="Shanfa" last="Lu">Shanfa Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Quanzi" sort="Li, Quanzi" uniqKey="Li Q" first="Quanzi" last="Li">Quanzi Li</name>
</author>
<author>
<name sortKey="Wei, Hairong" sort="Wei, Hairong" uniqKey="Wei H" first="Hairong" last="Wei">Hairong Wei</name>
</author>
<author>
<name sortKey="Chang, Mao Ju" sort="Chang, Mao Ju" uniqKey="Chang M" first="Mao-Ju" last="Chang">Mao-Ju Chang</name>
</author>
<author>
<name sortKey="Tunlaya Anukit, Sermsawat" sort="Tunlaya Anukit, Sermsawat" uniqKey="Tunlaya Anukit S" first="Sermsawat" last="Tunlaya-Anukit">Sermsawat Tunlaya-Anukit</name>
</author>
<author>
<name sortKey="Kim, Hoon" sort="Kim, Hoon" uniqKey="Kim H" first="Hoon" last="Kim">Hoon Kim</name>
</author>
<author>
<name sortKey="Liu, Jie" sort="Liu, Jie" uniqKey="Liu J" first="Jie" last="Liu">Jie Liu</name>
</author>
<author>
<name sortKey="Song, Jingyuan" sort="Song, Jingyuan" uniqKey="Song J" first="Jingyuan" last="Song">Jingyuan Song</name>
</author>
<author>
<name sortKey="Sun, Ying Hsuan" sort="Sun, Ying Hsuan" uniqKey="Sun Y" first="Ying-Hsuan" last="Sun">Ying-Hsuan Sun</name>
</author>
<author>
<name sortKey="Yuan, Lichai" sort="Yuan, Lichai" uniqKey="Yuan L" first="Lichai" last="Yuan">Lichai Yuan</name>
</author>
<author>
<name sortKey="Yeh, Ting Feng" sort="Yeh, Ting Feng" uniqKey="Yeh T" first="Ting-Feng" last="Yeh">Ting-Feng Yeh</name>
</author>
<author>
<name sortKey="Peszlen, Ilona" sort="Peszlen, Ilona" uniqKey="Peszlen I" first="Ilona" last="Peszlen">Ilona Peszlen</name>
</author>
<author>
<name sortKey="Ralph, John" sort="Ralph, John" uniqKey="Ralph J" first="John" last="Ralph">John Ralph</name>
</author>
<author>
<name sortKey="Sederoff, Ronald R" sort="Sederoff, Ronald R" uniqKey="Sederoff R" first="Ronald R" last="Sederoff">Ronald R. Sederoff</name>
</author>
<author>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23754401</idno>
<idno type="pmid">23754401</idno>
<idno type="doi">10.1073/pnas.1308936110</idno>
<idno type="pmc">PMC3696765</idno>
<idno type="wicri:Area/Main/Corpus">002567</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002567</idno>
<idno type="wicri:Area/Main/Curation">002567</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002567</idno>
<idno type="wicri:Area/Main/Exploration">002567</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa.</title>
<author>
<name sortKey="Lu, Shanfa" sort="Lu, Shanfa" uniqKey="Lu S" first="Shanfa" last="Lu">Shanfa Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Quanzi" sort="Li, Quanzi" uniqKey="Li Q" first="Quanzi" last="Li">Quanzi Li</name>
</author>
<author>
<name sortKey="Wei, Hairong" sort="Wei, Hairong" uniqKey="Wei H" first="Hairong" last="Wei">Hairong Wei</name>
</author>
<author>
<name sortKey="Chang, Mao Ju" sort="Chang, Mao Ju" uniqKey="Chang M" first="Mao-Ju" last="Chang">Mao-Ju Chang</name>
</author>
<author>
<name sortKey="Tunlaya Anukit, Sermsawat" sort="Tunlaya Anukit, Sermsawat" uniqKey="Tunlaya Anukit S" first="Sermsawat" last="Tunlaya-Anukit">Sermsawat Tunlaya-Anukit</name>
</author>
<author>
<name sortKey="Kim, Hoon" sort="Kim, Hoon" uniqKey="Kim H" first="Hoon" last="Kim">Hoon Kim</name>
</author>
<author>
<name sortKey="Liu, Jie" sort="Liu, Jie" uniqKey="Liu J" first="Jie" last="Liu">Jie Liu</name>
</author>
<author>
<name sortKey="Song, Jingyuan" sort="Song, Jingyuan" uniqKey="Song J" first="Jingyuan" last="Song">Jingyuan Song</name>
</author>
<author>
<name sortKey="Sun, Ying Hsuan" sort="Sun, Ying Hsuan" uniqKey="Sun Y" first="Ying-Hsuan" last="Sun">Ying-Hsuan Sun</name>
</author>
<author>
<name sortKey="Yuan, Lichai" sort="Yuan, Lichai" uniqKey="Yuan L" first="Lichai" last="Yuan">Lichai Yuan</name>
</author>
<author>
<name sortKey="Yeh, Ting Feng" sort="Yeh, Ting Feng" uniqKey="Yeh T" first="Ting-Feng" last="Yeh">Ting-Feng Yeh</name>
</author>
<author>
<name sortKey="Peszlen, Ilona" sort="Peszlen, Ilona" uniqKey="Peszlen I" first="Ilona" last="Peszlen">Ilona Peszlen</name>
</author>
<author>
<name sortKey="Ralph, John" sort="Ralph, John" uniqKey="Ralph J" first="John" last="Ralph">John Ralph</name>
</author>
<author>
<name sortKey="Sederoff, Ronald R" sort="Sederoff, Ronald R" uniqKey="Sederoff R" first="Ronald R" last="Sederoff">Ronald R. Sederoff</name>
</author>
<author>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence (MeSH)</term>
<term>Down-Regulation (genetics)</term>
<term>Gene Expression Regulation, Enzymologic (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Regulatory Networks (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Laccase (antagonists & inhibitors)</term>
<term>Laccase (genetics)</term>
<term>Lignin (antagonists & inhibitors)</term>
<term>Lignin (chemistry)</term>
<term>Lignin (metabolism)</term>
<term>MicroRNAs (genetics)</term>
<term>MicroRNAs (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>RNA, Plant (genetics)</term>
<term>RNA, Plant (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN des plantes (génétique)</term>
<term>ARN des plantes (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Laccase (antagonistes et inhibiteurs)</term>
<term>Laccase (génétique)</term>
<term>Lignine (antagonistes et inhibiteurs)</term>
<term>Lignine (composition chimique)</term>
<term>Lignine (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Régulation négative (génétique)</term>
<term>Réseaux de régulation génique (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>microARN (génétique)</term>
<term>microARN (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Laccase</term>
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Laccase</term>
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Down-Regulation</term>
<term>Laccase</term>
<term>MicroRNAs</term>
<term>Plant Proteins</term>
<term>Populus</term>
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN des plantes</term>
<term>Laccase</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Régulation négative</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Lignin</term>
<term>MicroRNAs</term>
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN des plantes</term>
<term>Lignine</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Gene Expression Regulation, Enzymologic</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Regulatory Networks</term>
<term>Genes, Plant</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gènes de plante</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Réseaux de régulation génique</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Laccases, as early as 1959, were proposed to catalyze the oxidative polymerization of monolignols. Genetic evidence in support of this hypothesis has been elusive due to functional redundancy of laccase genes. An Arabidopsis double mutant demonstrated the involvement of laccases in lignin biosynthesis. We previously identified a subset of laccase genes to be targets of a microRNA (miRNA) ptr-miR397a in Populus trichocarpa. To elucidate the roles of ptr-miR397a and its targets, we characterized the laccase gene family and identified 49 laccase gene models, of which 29 were predicted to be targets of ptr-miR397a. We overexpressed Ptr-MIR397a in transgenic P. trichocarpa. In each of all nine transgenic lines tested, 17 PtrLACs were down-regulated as analyzed by RNA-seq. Transgenic lines with severe reduction in the expression of these laccase genes resulted in an ∼40% decrease in the total laccase activity. Overexpression of Ptr-MIR397a in these transgenic lines also reduced lignin content, whereas levels of all monolignol biosynthetic gene transcripts remained unchanged. A hierarchical genetic regulatory network (GRN) built by a bottom-up graphic Gaussian model algorithm provides additional support for a role of ptr-miR397a as a negative regulator of laccases for lignin biosynthesis. Full transcriptome-based differential gene expression in the overexpressed transgenics and protein domain analyses implicate previously unidentified transcription factors and their targets in an extended hierarchical GRN including ptr-miR397a and laccases that coregulate lignin biosynthesis in wood formation. Ptr-miR397a, laccases, and other regulatory components of this network may provide additional strategies for genetic manipulation of lignin content. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23754401</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>09</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>110</Volume>
<Issue>26</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jun</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa.</ArticleTitle>
<Pagination>
<MedlinePgn>10848-53</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1308936110</ELocationID>
<Abstract>
<AbstractText>Laccases, as early as 1959, were proposed to catalyze the oxidative polymerization of monolignols. Genetic evidence in support of this hypothesis has been elusive due to functional redundancy of laccase genes. An Arabidopsis double mutant demonstrated the involvement of laccases in lignin biosynthesis. We previously identified a subset of laccase genes to be targets of a microRNA (miRNA) ptr-miR397a in Populus trichocarpa. To elucidate the roles of ptr-miR397a and its targets, we characterized the laccase gene family and identified 49 laccase gene models, of which 29 were predicted to be targets of ptr-miR397a. We overexpressed Ptr-MIR397a in transgenic P. trichocarpa. In each of all nine transgenic lines tested, 17 PtrLACs were down-regulated as analyzed by RNA-seq. Transgenic lines with severe reduction in the expression of these laccase genes resulted in an ∼40% decrease in the total laccase activity. Overexpression of Ptr-MIR397a in these transgenic lines also reduced lignin content, whereas levels of all monolignol biosynthetic gene transcripts remained unchanged. A hierarchical genetic regulatory network (GRN) built by a bottom-up graphic Gaussian model algorithm provides additional support for a role of ptr-miR397a as a negative regulator of laccases for lignin biosynthesis. Full transcriptome-based differential gene expression in the overexpressed transgenics and protein domain analyses implicate previously unidentified transcription factors and their targets in an extended hierarchical GRN including ptr-miR397a and laccases that coregulate lignin biosynthesis in wood formation. Ptr-miR397a, laccases, and other regulatory components of this network may provide additional strategies for genetic manipulation of lignin content. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Shanfa</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Quanzi</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wei</LastName>
<ForeName>Hairong</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Mao-Ju</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tunlaya-Anukit</LastName>
<ForeName>Sermsawat</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Hoon</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Jingyuan</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Ying-Hsuan</ForeName>
<Initials>YH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yuan</LastName>
<ForeName>Lichai</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yeh</LastName>
<ForeName>Ting-Feng</ForeName>
<Initials>TF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Peszlen</LastName>
<ForeName>Ilona</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ralph</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sederoff</LastName>
<ForeName>Ronald R</ForeName>
<Initials>RR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chiang</LastName>
<ForeName>Vincent L</ForeName>
<Initials>VL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>06</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.10.3.2</RegistryNumber>
<NameOfSubstance UI="D042845">Laccase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015536" MajorTopicYN="N">Down-Regulation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="N">Gene Expression Regulation, Enzymologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="N">Gene Regulatory Networks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042845" MajorTopicYN="N">Laccase</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>9</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23754401</ArticleId>
<ArticleId IdType="pii">1308936110</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1308936110</ArticleId>
<ArticleId IdType="pmc">PMC3696765</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2002 May;129(1):145-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12011346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Jan;51(1):144-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19996151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Biomol Chem. 2010 Feb 7;8(3):576-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20090974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):139-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Jan;21(1):248-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19122102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2003 Jun;116(3):175-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12836039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Aspects Med. 2005 Aug-Oct;26(4-5):313-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16112186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(1):131-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Apr 30;260(5108):672-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17812228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 Nov;47(11):1582-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17018558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Jun;233(6):1097-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21298285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2001 May;42(5):462-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11382811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 1996 Nov 7;96(7):2563-2606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11848837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14699-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22915581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Nov;60(4):649-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19674407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2002 Jun;20(6):557-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12042854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2003 Sep;64(1):163-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12946415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Mar;23(3):1124-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21447792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1976 Feb 20;191(4228):773-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17754175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Apr;37(6):1878-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19188256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Jun 18;14(6):787-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15200956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2011 Mar;12(2):115-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20858738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Jul;25(7):759-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17572667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2013 Mar;126(2):305-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23065025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2012 Mar;78(4-5):489-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22271306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2186-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2011 Nov;53(11):879-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22013976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1999 Jan;259(1-2):485-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9914531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Jan;227(2):465-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17909854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1959 Apr 25;183(4669):1152-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13657039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D152-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21037258</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Chang, Mao Ju" sort="Chang, Mao Ju" uniqKey="Chang M" first="Mao-Ju" last="Chang">Mao-Ju Chang</name>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
<name sortKey="Kim, Hoon" sort="Kim, Hoon" uniqKey="Kim H" first="Hoon" last="Kim">Hoon Kim</name>
<name sortKey="Li, Quanzi" sort="Li, Quanzi" uniqKey="Li Q" first="Quanzi" last="Li">Quanzi Li</name>
<name sortKey="Liu, Jie" sort="Liu, Jie" uniqKey="Liu J" first="Jie" last="Liu">Jie Liu</name>
<name sortKey="Peszlen, Ilona" sort="Peszlen, Ilona" uniqKey="Peszlen I" first="Ilona" last="Peszlen">Ilona Peszlen</name>
<name sortKey="Ralph, John" sort="Ralph, John" uniqKey="Ralph J" first="John" last="Ralph">John Ralph</name>
<name sortKey="Sederoff, Ronald R" sort="Sederoff, Ronald R" uniqKey="Sederoff R" first="Ronald R" last="Sederoff">Ronald R. Sederoff</name>
<name sortKey="Song, Jingyuan" sort="Song, Jingyuan" uniqKey="Song J" first="Jingyuan" last="Song">Jingyuan Song</name>
<name sortKey="Sun, Ying Hsuan" sort="Sun, Ying Hsuan" uniqKey="Sun Y" first="Ying-Hsuan" last="Sun">Ying-Hsuan Sun</name>
<name sortKey="Tunlaya Anukit, Sermsawat" sort="Tunlaya Anukit, Sermsawat" uniqKey="Tunlaya Anukit S" first="Sermsawat" last="Tunlaya-Anukit">Sermsawat Tunlaya-Anukit</name>
<name sortKey="Wei, Hairong" sort="Wei, Hairong" uniqKey="Wei H" first="Hairong" last="Wei">Hairong Wei</name>
<name sortKey="Yeh, Ting Feng" sort="Yeh, Ting Feng" uniqKey="Yeh T" first="Ting-Feng" last="Yeh">Ting-Feng Yeh</name>
<name sortKey="Yuan, Lichai" sort="Yuan, Lichai" uniqKey="Yuan L" first="Lichai" last="Yuan">Lichai Yuan</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Lu, Shanfa" sort="Lu, Shanfa" uniqKey="Lu S" first="Shanfa" last="Lu">Shanfa Lu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002521 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002521 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23754401
   |texte=   Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23754401" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020